High-order symplectic FDTD scheme for solving a time-dependent Schrödinger equation

نویسندگان

  • Jing Shen
  • Wei E. I. Sha
  • Zhixiang Huang
  • Mingsheng Chen
  • Xianliang Wu
چکیده

Using the three-order symplectic integrators and fourth-order collocated spatial differences, a highorder symplectic finite-difference time-domain (SFDTD) scheme is proposed to solve the time-dependent Schrödinger equation. First, the high-order symplectic framework for discretizing a Schrödinger equation is described. Then the numerical stability and dispersion analyses are provided for the FDTD(2, 2), higher-order FDTD(2, 4) and SFDTD(3, 4) schemes. Next, to implement the Dirichlet boundary condition encountered in the quantum eigenvalue problem, the image theory and one-sided difference technique are manipulated particularly for high-order collocated differences. Finally, a detailed numerical study on 1D and 2D quantum eigenvalue problems is carried out. The simulation results of quantum wells and harmonic oscillators strongly confirm the advantages of the SFDTD scheme over the traditional FDTD method and other high-order approaches. The explicit SFDTD scheme, which is high-order-accurate and energy-conserving, is well suited for a long-term simulation and can save computer resources with large time step and coarse spatial grids. © 2012 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-Order Symplectic FDTD Scheme for Solving Time-Dependent Schrödinger Equation

Using the three-order symplectic integrators and fourth-order collocated spatial differences, a high-order symplectic finite-difference time-domain (SFDTD) scheme is proposed to solve the time-dependent Schrödinger equation. First, the high-order symplectic framework for discretizing Schrödinger equation is described. Then the numerical stability and dispersion analyses are provided for the FDT...

متن کامل

A Generalized FDTD Method with Absorbing Boundary Condition for Solving a Time-Dependent Linear Schrodinger Equation

The Finite-Difference Time-Domain (FDTD) method is a well-known technique for the analysis of quantum devices. It solves a discretized Schrödinger equation in an iterative process. However, the method provides only a second-order accurate numerical solution and requires that the spatial grid size and time step should satisfy a very restricted condition in order to prevent the numerical solution...

متن کامل

A generalized finite-difference time-domain quantum method for the N-body interacting Hamiltonian

The Quantum Finite-Difference Time-Domain (FDTD-Q) method is a numerical method for solving the time evolution of the Schrödinger equation. It can be applied to systems of interacting particles, allowing for realistic simulations of quantum mechanics of various experimental systems. One of the drawbacks of the method is that divergences in the numerical evolution occur rather easily in the pres...

متن کامل

A Local Strong form Meshless Method for Solving 2D time-Dependent Schrödinger Equations

This paper deals with the numerical solutions of the 2D time dependent Schr¨odinger equations by using a local strong form meshless method. The time variable is discretized by a finite difference scheme. Then, in the resultant elliptic type PDEs, special variable is discretized with a local radial basis function (RBF) methods for which the PDE operator is also imposed in the local matrices. Des...

متن کامل

s . co m p - ph ] 2 7 Se p 20 05 Gradient Symplectic Algorithms for Solving the Radial Schrödinger Equation

The radial Schrödinger equation for a spherically symmetric potential can be regarded as a one dimensional classical harmonic oscillator with a time-dependent spring constant. For solving classical dynamics problems, symplectic integrators are well known for their excellent conservation properties. The class of gradient symplectic algorithms is particularly suited for solving harmonic oscillato...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computer Physics Communications

دوره 184  شماره 

صفحات  -

تاریخ انتشار 2013